Statistical Machine Translation with Scarce Resources Using Morpho-syntactic Information
نویسندگان
چکیده
In statistical machine translation, correspondences between the words in the source and the target language are learned from parallel corpora, and often little or no linguistic knowledge is used to structure the underlying models. In particular, existing statistical systems for machine translation often treat different inflected forms of the same lemma as if they were independent of one another. The bilingual training data can be better exploited by explicitly taking into account the interdependencies of related inflected forms. We propose the construction of hierarchical lexicon models on the basis of equivalence classes of words. In addition, we introduce sentence-level restructuring transformations which aim at the assimilation of word order in related sentences. We have systematically investigated the amount of bilingual training data required to maintain an acceptable quality of machine translation. The combination of the suggested methods for improving translation quality in frameworks with scarce resources has been successfully tested: We were able to reduce the amount of bilingual training data to less than 10% of the original corpus, while losing only 1.6% in translation quality. The improvement of the translation results is demonstrated on two German-English corpora taken from the Verbmobil task and the Nespole! task.
منابع مشابه
Exploiting Phrasal Lexica and Additional Morpho-syntactic Language Resources for Statistical Machine Translation with Scarce Training Data
In this work, the use of a phrasal lexicon for statistical machine translation is proposed, and the relation between data acquisition costs and translation quality for different types and sizes of language resources has been analyzed. The language pairs are Spanish-English and Catalan-English, and the translation is performed in all directions. The phrasal lexicon is used to increase as well as...
متن کاملMachine translation: statistical approach with additional linguistic knowledge
In this thesis, three possible aspects of using linguistic (i.e. morpho-syntactic) knowledge for statistical machine translation are described: the treatment of syntactic differences between source and target language using source POS tags, statistical machine translation with a small amount of bilingual training data, and automatic error analysis of translation output. Reorderings in the sourc...
متن کاملDealing with Sign Language Morphemes in Statistical Machine Translation
The aim of this research is to establish the role of linguistic information in data-scarce statistical machine translation for sign languages using freely available tools. The main challenge in statistical machine translation is the scarcity of suitable data, and this problem becomes more pronounced in sign languages. The available corpora are small, usually not domain-specific, and their annot...
متن کاملMorphology In Statistical Machine Translation From English To Highly Inflectional Language
In this paper, we investigate the role of morphology in phrase-based statistical machine translation (SMT) from English to the highly inflectional Slovenian language. Translation to an inflectional language is a challenging task because of its morphological complexity. Rich morphology increases data sparsity and worsens the quality of statistical machine translation. The idea of the paper is to...
متن کاملReduction of Morpho-Syntactic Features in Statistical Machine Translation of Highly Inflective Language
We address the problem of statistical machine translation from highly inflective language to less inflective one. The characteristics of inflective languages are generally not taken into account by the statistical machine translation system. Existing translation systems often treat different inflected word forms of the same lemma as if they were independent of each other, although some interdep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Linguistics
دوره 30 شماره
صفحات -
تاریخ انتشار 2004